INNOVATION PLATFORM WHITE PAPER 1

General purpose computing on a GPU
expands GPU implementation beyond
its traditional usage in digital graphic
rendering. Big Data is one area that
tremendously benefits from this
GPU-acceleration. This paper
provides a high-level overview of
GPU-acceleration and discusses how
Technica utilized GPU for its
innovative Big Data Products: FUNL
and SQuadron.

Figure 1 — Sequentially Painted
Happy Face

Technica R

High-performance Computing/

The Technica Innovation GPU Acceleration

Platform White Paper e b
Series presents Networkdng
advanced topics that

will drive competitive TEChnicu
advantage for Innovation Reference
next-generation IT Architecture
over the next
three-to-five years.

Artificial Intelligence,
Machine Learning,
Deep Learning

Cloud

Automation Big Data Analytics

Cybersecurity

Internet of Things

GPU ACCELERATED
COMPUTING

GPU-accelerated computing utilizes graphics processing units (GPUs) together
with the Central Processing Unit (CPU) to accelerate scientific, analytics,
engineering, consumer, and enterprise applications. GPU computing has
demonstrated much progress with enhancing artificial intelligence performance
with deep learning algorithms.

The performance experienced in GPU accelerated applications is often by orders
of magnitude—10 to 100 times faster than CPU-only computing. GPU accelerated
servers now power energy-efficient datacenters in government labs, universities,
enterprises, and small-and-medium businesses around the world. GPUs are
accelerating applications in platforms ranging from cars, to mobile phones and
tablets, to drones and robots.

This paper presents key aspects of GPU computing and highlights innovations
Technica has made in GPU accelerating its Big Data products: FUNL and
SQuadron.

GPU COMPUTING HISTORY

NVIDIA Corporation created the first GPUs in the early 2000s. GPU cards (printed
circuit boards) were placed in desktop machines to speed up pixel processing for
PC computer games. Instead of sequentially processing pixels with CPUs, GPUs
allowed the parallel processing of numerous pixels simultaneously.

Figure 1 presents two progressive photos from a YouTube video filmed at a
recent NVIDIA conference®. The photos portray a CPU working in sequentially to
draw a face. The paint machine starts by outlining the drawing the circle of the
face; then each eye; and finally, the smile is rendered. The process takes about
a minute.

* Mythbusters Demo GPU versus CPU:#ttps://voutu.be/»P28LKWTer)

technicacorp.com

INNOVATION PLATFORM WHITE PAPER 2

In contrast, a GPU renders a much more complex image, where each pixel is
painted simultaneously. With parallel processing, the entire face of the Mona Lisa
is completed in less than a second.

J

-

il

|

|

N

Figure 2 — Parallel Painted Happy Face

In 2007, NVIDIA took steps to move GPUs beyond gaming applications with the
first release of CUDA (Compute Unified Device Architecture). CUDA is a parallel
computing platform and application programming interface (API) architecture
that allows developers to leverage the massively parallel processing capability of
the GPU. While CUDA is proprietary to NVIDIA GPUs, the OpenCL (Open
Computing Language) APl has been developed as an open alternative.

CPU VS. GPU

The introduction of CUDA allowed programmers to take advantage of the power
of parallel processing for lower level tasks. With APIs like CUDA and OpenCL,
programmers are able to improve performance with a mix of CPU and GPU
technology, using the best processor best suited for specific tasks.

Since 2007, both types of processors have grown in processing power. However,
the performance of GPUs in general and NVIDIA GPUs specifically have increased
at a faster rate as portrayed in Figure 3. The blue line represents the teraflop
processing power of various NVIDIA GPU products, compared to top class CPUs.

50 K80
25 B NVIDIA GPU
@ x86CPU
2.0
(7]
o
Q 15
[T
—
1.0

M2090

——

2008 2009 2010 2011 2012 2013 2014

Figure 3 — CPU and GPU Peak Performance in Teraflops

technicacorp.com

INNOVATION PLATFORM WHITE PAPER 3

CPU Multiple Cores
+

GPU Thousands of Cores

Figure 4 — CPU/GPU
Core Comparison

There are three basic approaches to
leveraging GPU acceleration for
applications:

e Dropping in GPU-optimized
Libraries

e Adding Compiler “Hints” to
Auto-parallelize Code

e Using Extensions to Standard
Languages like C, Fortran,
Python, and Java

One of the problems with today’s modern CPU processors is they have hit a clock
rate limit at around 4 GHz. At 4 GHz too much heat is generated for the current
technology, and must be dissipated with elaborate and expensive cooling
solutions.

Unable to increase the clock rate, manufacturers adopted a different approach to
make forever-faster processors. The two main CPU manufacturers, Intel and
AMD, have been forced to add more cores to the processors. Currently the
fastest flagship processor from Intel, the Intel Core i7-6950X Processor Extreme
Edition, has 10 cores. GPU manufacturers, like NVIDIA and AMD, have also
followed this pattern. Due to less technical complexity needed in GPUs, the
number of cores is in the thousands.

A CPU consists of a few (currently between four and ten) cores optimized for
sequential serial processing while a GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores designed for handling
multiple tasks simultaneously. Each core can be envisioned as a stand-alone
processor. To leverage the power of multiple cores, programmers much master
the art of parallel programming, i.e. splitting up tasks between processors.

PARALLEL PROGRAMMING & GPU ACCELERATION

There is a big challenge with parallel programming. It requires programmers to
switch from their traditional serial, single-thread approach, to dealing with
multiple threads all executing at once. Even considering only one CPU core, the
programmer has to think about two, four, six, or eight program threads and how
they interact and communicate with one another. Heterogeneous computing
with CPUs and GPUs adds an additional layer of complexity. When GPU
accelerating applications, programmers must understand what tasks are best
suited to each type of processor as pictured in Figure 5.

Application Code

Compt{te— Rest of
Inten§|ve « Sequential
Functions CPU Code

5%
of Code

i

Figure 5 — How GPU Acceleration Works

NVIDA offers all of these options for CUDA. Figure 6 presents a standard Python
program designed to perform a Monte Carlo simulation—an algorithm that
allows risk to be modeled in quantitative analysis and decision making. The
CPU-only Python code achieved its result for the simulation in 26 seconds.

technicacorp.com

INNOVATION PLATFORM WHITE PAPER 4

step(price, dt, c0, cl, noise):
return price*np.exp(cO*dt+cl*noise)

montecarlo(paths, dt, interest, volatility):
cO0 = interest — 0.5 * volatility ** 2
cl = volatility * np.sqrt(dt)

for j in xrange(1, paths.shape[1]):
prices = paths[:, j — 1]
noises = np.random.normal(0., 1., prices.size)
paths[:, j] = step(prices, dt, c0, c1, noises)

Figure 6 — CPU-only Python Code

Contrast this with the code in Figure 7 a combination of Python and the CUDA
extension to CUDA via PyCUDA.

step(price, dt, c0, c1, noise):
price = price.astype(np.float32
return price*cumath.exp(cO*dt+cl*noise)

montecarlo(paths, dt, interest, volatility):
c0 = interest — 0.5 * volatility ** 2
cl = volatility * np.sqrt(dt)

prng = curand()

d_noises = gpuarray.empty(paths.shape[0], np.float32)
d_curlLast = gpuarray.to_gpu(paths[:,0].astype(np.float32))
d_curNext = gpuarray.empty(paths.shape[0], np.float32)

for j in xrange(1l, paths.shape[1]):
prng.fill_normal(d_noises)
d_curNext = step(d_curLast, dt, c0, c1, d_noises)
paths[:,j] = d_curNext.get()
d_curNext, d_curLast = d_curlLast, d_curNext noises

Figure 7 — CPU and GPU Accelerated Python Code

With the additional eight lines of GPU acceleration code, the Monte Carlo
simulation was performed in 1.5 seconds—a 17x speedup.

TECHNICA AND GPU COMPUTING

In 2013, Technica decided to focus its Independent Research and Development
(IR&D) organization on GPU computing. The company foresaw that Big Data
applications were a specific type of problem that benefitted greatly from the
massively parallel processing capabilities of GPUs. The company devoted many
in-house resources to learning the intricacies of CUDA. Technica then turned its
attention to creating two products that leverage the power of GPU computing to
perform certain Big Data processing tasks more cost effectively—Big Data on a
budget-- and offer orders of magnitude improvement in cost and performance:

e FUNL—analytic engine that includes graph analytic, machine learning,
and deep learning algorithms. Numerous GPU computing techniques
were utilized to make FUNL a unique tool to process Big Data.

technicacorp.com

INNOVATION PLATFORM WHITE PAPER 5

e SQuadron—GPU database with in-database analytics and integrated
time series processing.

Figure 8 dramatically highlights the benefit of GPU computing, where SQuadron
performs comparably to a CPU-only solution at 100x lower cost.

SQuadron on Dell Server

* 6 Cores, 3.40 GHz
* 64GB RAM, DDR3 1600MHz

* 24TB RAID HDDs

* NVIDIA Tesla K40c-12GB GPU

$9,700 Comparable
$Th WA= 92, performance
at significant

* 56 Intel Xeon ES-2680 v2 2.8GHz with 560 Cores discount...

- 1.5TB RAM

- 50TB HDDs >1OOX

* 1.2TBSSD Lower Cost

3 YR TCA = $1,136,440

Figure 8 — SQuadron Cost Comparison

SUMMARY

GPU accelerated computing is one of the big drivers of the next generation of
innovation, especially in Big Data applications like graph analytics and deep
learning. The massively parallel architecture of GPUs allows orders of magnitude
performance improvements at a fraction of the cost of CPU-only solutions.
Technica has embraced GPU computing by becoming experts in CUDA and
creating the innovative Big Data applications: FUNL and SQuadron.

Technica provides professional
services, products, and innovative
technology solutions to the Federal
Government. We specialize in network
operations and infrastructure; cyber
defense and security; government
application integration; systems
engineering and training; and product
research, deployment planning,

and support.

Technica

22970 Indian Creek Drive, Suite 500
Dulles, VA 20166
703.662.2000

©2017 Technica Corporation. All rights reserved. tec h n | cacor p .com

Technica™ is a registered trademark of Technica Corporation.

