
MALWARE
MUTATION
SOLUTION
STAYING AHEAD OF
THE THREAT

EVASIVE MALWARE
Following the tenets for secure cyber-physical system design
and assessment, traditional cyber security experimentation,
such as searching for vulnerabilities, often pits one team of
cyber security experts against another. The flaw here is a
potential mismatch of skillsets for those involved, which may
include nation-state-sponsored teams of attackers. Likewise,
the current skill set of threat actors does not mean that all
threats that can exist already do exist. Instead, it is necessary
to explore and evolve malware to remain one step ahead.
The need for new malware prevention measures is apparent to
the US military, not the least within the US Air Force. Malware
can interfere with operations, damage equipment, open security
risks, and poses many other risks that must be mitigated.

To build malware detection tools and measure their effective-
ness, it is necessary to develop some way to predict new
intrusion methods attempts and record them accurately in a
comprehensive library of known threats, along with the
counter methods to resolve them. The concept of artificial
evolution has been applied to numerous real-world applications.
Technica IR&D has been researching the application of this
concept to computer viruses, and we call this domain “Evolvable
Malware”. Technica’s research focuses on Evolutionary Algorithm
(EA) techniques to evolve variants of a computer virus that
successfully evade popular antivirus scanners. The result is a valid
database of malware variants, which is sought by anti-malware
scanners, so as to identify the variants before they are released
by malware developers.

The security arms race has continually pressured adversaries
to develop malware that remains undetected as long as
possible once deployed. Categories of evasive malware
techniques include:

• Polymorphic and Metamorphic Malware Engines apply
 semantics-preserving transformations (e.g., changing
 instructions to equivalent sequences) primarily to avoid
 signature-based detection.

• Packers encrypt or compress malicious instructions to conceal
 true behavior. A packed malware sample executes decryption
 code at runtime to unpack the malicious Instructions into
 dynamic memory, then transfers control to those instructions.

SOLUTION VALUE
With the ever-increasing frequency of cyber-attacks
across all sectors, next-generation avionics
architectures require the ability to adapt and evolve
their security posture to keep pace with the
rapidly changing threat landscape. The ability to
rapidly detect and prevent attacks while adapting
security policy in real-time as new threats come online
will be critical to maintaining system confidentiality,
functionality, and availability.

Technica, in partnership with Vanderbilt University,
proposes a framework called the Malware Evolution
Engine. This cyber resilience solution consists of two
modules:

 1. A Binary Lifting Engine that converts
 executables into an intermediate representation
 of code that is "analysis friendly," and

 2. A Mutation Engine that transforms the malware
 program based on what is learned from the Binary
 Lifting Engine to create a different version of
 the program.

TechnicaTM is a trademark of Technica Corporation. 080422

WE LISTEN. WE APPLY. WE SOLVE.

BINARY LIFTING ENGINE
Once the user identifies a starting sample to evolve, the binary lifting engine derives key abstract information about
the sample:

WE LISTEN. WE APPLY. WE SOLVE.

Step 3Step 2Step 1

Malware Evolution Engine

Novel
Malware
Sample

Binary Lifting
Engine

Input
Malware
Sample

Evasion
Envelope
✓



✓
✓

✓



✓
✓

Mutation Engine

Mutant Evaluation ✓

A

B C

D return..

x ≥ 5x < 5

Corresponding
control flow graphC code with conditional branch (b)(a)

1 int main (int argc , char ** argv) {
2 int x = atoi(argv [1]);
3 int retval =0;
4 if (x < 5) {
5 retval += 1;
6 } else {
7 retval = 0;
8 }
9 return retval;
10 }

 Mutant
 PopulationDataflow Analysis

Invariant Analysis

High-level Architecture of Technica's Malware Mutation Solution

Technica’s malware mutation solution rapidly and effectively
devises novel malware samples that evade detection and
subvert analysis across a swath of architectures and safety-
critical systems. Increasingly sophisticated detection
mechanisms are generated by adapting previously successful
automated program repair techniques. Figure 1 illustrates
our approach at a high level. We begin with a malware
sample we wish to evolve to become more evasive and an
evasion envelope consisting of detection techniques or
mechanisms we wish to evade.

EVASIVE MALWARE (cont.)

 As a result, it is not possible to know the
 behavior of the malware sample without
 dynamic analysis. Instead, conservative
 heuristics detect the unpacking code
 rather than the malicious payload within.

• Environment Detection refers to a broad

 set of runtime checks that malware can
 execute to deduce the environment in which
 it executes. For example, a malware analyst
 may attach a debugger to a malware sample to step
 through its execution. However, the malware sample
 can first test if a debugger is attached – if the sample
 detects a debugger, it can simply abort execution or
 change its behavior to subvert the analyst.

We can treat the fraction of the evasion envelope that does not detect the mutant as malicious to be a notion of fitness
to guide the mutation process. We continue evolving populations of mutants and validating each mutant against the
evasion envelope until we find at least one mutant that evades a target fraction of the evasion envelope. That mutant is
our desired output sample that has evolved to gain evasive properties while maintaining its original malicious behavior.

TechnicaTM is a trademark of Technica Corporation. 0804222

The two critical aspects of the solution are thus (1) the binary lifting engine and associated intermediate representations
and (2) the mutation engine and integration with the evasion envelope.

2. Using tools such as DIG or KLEE, a set of invariants is
 derived for each function defined in the input sample.
 These invariants represent critical, logical predicates that
 provide insights into the sample’s desired behavior.

1. Using tools such as Ghidra, IDA Pro, objdump, or radare2,
 a CFG is computed for each function defined in the input
 sample. This CFG is the key structure used to mutate the
 input sample to defeat signature-based detection
 mechanisms.

While CFGs are rapidly computed from input binaries, invariant detection can take several hours on mid-range workstations.
This is because it may require simulating execution or concolic execution of functions within the input. That said, invariant
detection is readily parallelized in the cloud or cluster environments.

In Step 1, the input malware sample is fed to a binary lifting
engine that recovers abstract information about the sample,
including dataflow analysis to create a Control Flow Graph
(CFG) and invariant analysis to identify inputs and outputs of
functions within the sample.

In Step 2, the lifted representations are fed into a mutation
engine that produces a population of many candidate mu-
tants that are each evaluated against the evasion envelope.

Finally, in Step 3, one or more mutants form a novel malware
sample that evades a target fraction of the evasion envelope.

703.662.2000 | technicacorp.com

TechnicaTM is a trademark of Technica Corporation. 080422

WE LISTEN. WE APPLY. WE SOLVE.

MUTATION ENGINE
Together, the CFG and invariants for an input sample are fed to
the mutation engine to generate novel binary mutants. Given
the CFG, a list of candidate transformation sites is generated:
branch instructions, comparison instructions, function pro-
logues and epilogues, and loop heads. A fixed number of sites
within the code are selected (configurable but expected to be
between 500 - 1,000) and then each transformation described
below is enumerated to create a new candidate mutant.

• Inverting Branch Conditions
 By identifying branch and comparison instructions, we can
 invert the boolean condition associated with each branch
 outcome and reorder the branch targets. This will shift the
 topology of the CFG by changing the order in which branch
 outcomes are considered at runtime.

• Adding Superfluous Conditions and Branches
 Typical binary and malware detection techniques analyze
 the topology of the CFG. Introducing new branches that have
 no outcome in the underlying program behavior will add new
 edges and nodes to the CFG that will preclude many existing
 detection mechanisms.

• Adding Superfluous Loads and Stores
 Binary program code includes interactions with the runtime
 stack to load and store information computed within a
 function and to pass parameters. By adding additional push,
 pop, load, and store instructions to a program, we can
 influence and disrupt how program analyzers and malware
 detectors recover function prototype information and call
 graph edges.

• Copying CFG Subgraphs
 Traditional automated program repair involves copying
 portions of program source code from one site to another.
 Instead we copy subgraphs of the CFG from one site to
 another. While this transformation is a higher risk — it will
 more likely produce nonfunctional mutants, but those
 functional mutants contain more novel CFG topologies.

SUMMARY
Malicious software often employs a variety of
methods to increase analysis time. Unfortunately,
such stealthy malware is typically produced by
a small set of human-written transformations,
making it difficult to analyze by conventional
means and for defenders to reconstruct.
Technica’s Malware Mutation Solution captures
the approaches that the user seeks to have when
evolving a new and more robust malware sample.
This ability to predict future malware can help
augment future defensive techniques.

