
MISSION
The goal of FUNL is to bring meaning to data at

an affordable price. FUNL incorporates commodity

hardware and novel software techniques to exploit

the hardware capabilities. Efficient I/O mechanisms

for GPU-based graph processing, a library of

graph analytic and machine learning solutions,

and visualization are integrated into a unified

system that provides end-to-end solutions to

Big Data problems.

CO
MP

LE
X B

IG
 DA

TA
 ON

 A
BU

DG
ET

AFFORDABLE
INSIGHT

NETWORK

MODEL

GRAPH

BIG DATA

ANALYTICS

SOLUTION

Technica Dulles, VA (HQ)
22970 Indian Creek Drive, Suite 500
Dulles, VA 20166

703.662.2000

technicacorp.com

Technica provides professional services,

products, and innovative technology

solutions to the Federal Government.

We specialize in network operations

and infrastructure; cyber defense

and security; government application

integration; systems engineering and

training; and product research,

deployment planning, and support.

Shard 3

Singular Value Decomposition is a matrix factoring algorithm used for many applications
including Principal Component Analysis. PCA uses orthogonal transformation to find a linear
projection of high dimensional data into a low dimensional subspace. The resulting linearly
uncorrelated variables are called principal
components, and represent the dimensions
in which the greatest variance in
data exists.

PROBLEM
Data production is increasing exponentially, creating a
corresponding demand for Big Data processing. Complex
processing with significant data interdependencies, such as
graph analysis, typically requires expensive investments in
hardware and software. These solutions use specialized
hardware with large amounts of RAM, high-speed
interconnections, and many CPUs to fit the data into memory.

SOLUTION
The FUNL graph analytics solution combines the I/O efficiency of PSW, hybrid CPU/GPU
algorithms, and compression techniques to deliver high performance at a much lower cost,
with a low barrier to entry. Using off-the-shelf desktop hardware, FUNL performs comparably
to dedicated solutions for many scenarios.

PERFORMANCE RESULTS
To test performance, FUNL was evaluated against
three different benchmarks:

INSPIRED BY PROCESSING WITH
PARALLEL SLIDING WINDOWS
As Big Data Graphs are irregular, processing requires random
access throughout the entire graph which can greatly increase
processing time. Parallel Sliding Windows (PSW)1 is an out-of-core
graph processing technique that organizes graph data into
partitions to be loaded separately into memory and processed
iteratively. This enables large data sets to be processed
efficiently on commodity hardware

PSW divides the graph into P intervals of vertices with
consecutive IDs. The list of edges is then organized such that for
each interval of vertices, the process only needs to access P
contiguous blocks of data.

Given a graph of 1.4 billion vertices and 6.6 billion edges,
a CPU-only solution using PSW was able to compute belief
propagation in 27 minutes on a Mac Mini, while a
Hadoop-based graph mining library, distributed over 100
nodes runs the same computation in 22 minutes.

I/O EFFICIENT ALGORITHMS
Reducing I/O is key to improving the performance of out-of-core graph algorithms.
The limited memory of the GPU means that multiple shards can be stored in CPU memory.
FUNL incorporates multiple caching schemes to optimize
data reuse from CPU memory for each algorithm.

Power law distributions are common in real world graph
data. This means that there are many vertices with few
edges, and few vertices with many edges. FUNL’s
compression scheme improves the PSW approach by
exploiting the large number of small integers, potentially
cutting the file size in half. Parallelized decompression
reduces the overhead that is introduced.

MASSIVE PARALLELISM
FUNL employs a GPU with 1000s of compute cores to accelerate computationally intensive
algorithms. The massive parallelism of GPUs speeds up analysis by as much as an order of
magnitude or more, depending on the computational intensity of the algorithm as well as
properties of the input data. To take full advantage of the GPU, data can be regularized for
even more efficient computation. The benefit gained from the use of a GPU depends heavily
on the ratio of computation to memory access. For low computation to memory access
scenarios, the CPU may be more efficient. FUNL distributes the processing between the CPU
and the GPU as necessary.

ALGORITHM PERFORMANCE

FUNL Quad Core
CPU Spark

Algorithm Data Set Performance Time (seconds)

 Page Rank 4.8M Vertices
 69M Edges 5.23 11.46 110.4

 Triangle
 Counting

 41M Vertices
 1.4B Edges 563 3960.49 N/A

 Collaborative
 Filtering Using
 Alternative
 Least Squares

 Sparse Matrix:
 20K x 10K
 Non-Zeros:
 53M

190.15 1444.85 N/A

 Support Vector
 Machines

 Dense Matrix:
 25M x 100 456.41 731.09 N/A

Belief Propagation is a message passing algorithm performed on graph models as a
method to infer information about unknown vertices based on known information about
other vertices. FUNL implements BP using
compressed PSW.

Quad Core CPU benchmark, a CPU-only
solution using PSW and the same hardware
as FUNL

Spark cluster benchmark using
Amazon Web Services

16-Core Server benchmark,
a CPU-only solution using PSW

 FUNL / Quad Core CPU
GPU: GeForce GTX TITAN, 2688 CUDA Cores,
 928 MHz, 6GB vRAM
CPU: Core i7, Quad Core, 3.40 GHz
RAM: 16GB (4x4GB), 1333 MHz
Storage: HDD, ~ 180 MB/sec

 16 Core Server
CPU: Xeon E5-2690, 16 Cores, 2.9 GHz
RAM: 64GB, 1600 MHz
Storage: HDDx6, RAID0, 690MB/sec

FUNL / Quad Core CPU
GPU: GeForce GTX TITAN,
 2688 CUDA Cores,
 928 MHz, 6GB vRAM
CPU: Core i7, Quad Core, 3.40 GHz
RAM: 16GB (4x4GB), 1333 MHz
Storage: HDD, ~ 180 MB/sec

Spark Cluster
System: AWS EC2 m1.large
Nodes: 10
Network: Moderate Performance

Matrix Subdividing

Shard Description with Interval 2 Windows Highlighted

Shard 1

Interval 1

Shard 2

Interval 2 Interval 3

Shard 4

Interval 4

Shard Description with Interval 1 Windows Highlighted

Shard 1

Interval 1

Shard 2

Interval 2

Shard 3

Interval 3

Shard 4

Interval 4

Shard 1

Interval 1

Shard 2

Interval 2

Shard 3

Interval 3

Shard 4

Interval 4

Shards Assigned to Varying Intervals of Vertices

Shard 3 Shard 4

Out-edge
List for

All Intervals

Out-edge
List for

All Intervals

Out-edge
List for

All Intervals

Copyright © 2016 Technica Corporation. All Rights Reserved. 0317161Kyrola, Blelloch, and Guestrin, GraphChi: Large-Scale Graph Computation on Just a PC, 2012

≥72
≥50
≥39
≥34
≥31
≥29
≥17
≥16
≥15
≥8
≥4
≥2
≥1
=0

Count

Power Law Distribution

Count
≥72
≥50
≥39
≥34
≥31
≥29
≥17
≥16
≥15
≥8
≥4
≥2
≥1
=0

Scaling of Belief Propagation Performance
as a Function of Graph Size

graph edge count

tim
e

(s
ec

)

1.14M 13M 69M
0

20

40

60

80

100

120

140

160

180

 FUNL / Quad Core CPU
GPU: GeForce GTX TITAN, 2688 CUDA Cores,
 928 MHz, 6GB vRAM
CPU: Core i7, Quad Core, 3.50 GHz
RAM: 16GB (4x4GB), 1333 MHz
Storage: HDD, ~ 150 MB/sec Scaling of Out-of-Core SVD as a Function of Matrix Size

matrix size

tim
e

(s
ec

)

2500 x 2000 3500 x 3000 5000 x 4000 9000 x 8000 18000 x 16000
0

50

100

150

200

250

300

350

400

DEEP LEARNING
DeepInsight is a deep learning application for analyzing graph data. Based on the DeepWalk2
algorithm, it uses the GPU to generate many random walks on the graph in parallel, which are
used to learn about relationships within the graph. The result is a compressed representation
of each node that can be used for many tasks including classification and link prediction.
Additionally, DeepInsight can use natural language processing to incorporate text associated
with each node to improve the results.

FUNL vs CPU-ONLY, SINGLE MACHINE SOLUTION
FUNL has a flexible framework
that chooses the best
approach to get the fastest
performance for any data
set and algorithm.

For some scenarios,
a linear algebra
approach performs
better than PSW. In these
cases, the FUNL system divides the input
matrix into smaller sub-matrices to fit into
CPU or GPU memory for processing.

Quad Core
CPU

Solution
Shards

Graph
Based

Algorithms

CPU
Optimized

Compressed
Shards

Sub-
Matricies

FUNL
Graph
Based

Algorithms

GPU
Optimized

Matrix
Based

Algorithms

CPU
Optimized

Edge
List
or

Adjacency
Matrix

6543210 87

6

5

4

3

2

1

0

8

7

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Matrix Subdividing

6

8

7

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

6 543210 87

2

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

5

4

3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Sub-Matrix
1

Sub-Matrix
2

Sub-Matrix
3

0

2Bryan Perozzi, Rami Al-Rfou, Steven Skiena, DeepWalk: Online Learning of Social Representations, 2014

