
MISSION
The goal of FUNL is to bring meaning to data at  

an affordable price. FUNL incorporates commodity 

hardware and novel software techniques to exploit 

the hardware capabilities. Efficient I/O mechanisms 

for GPU-based graph processing, a library of  

graph analytic and machine learning solutions,  

and visualization are integrated into a unified  

system that provides end-to-end solutions to  

Big Data problems.
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Technica provides professional services, 

products, and innovative technology 

solutions to the Federal Government. 

We specialize in network operations 

and infrastructure; cyber defense 

and security; government application 

integration; systems engineering and 

training; and product research,  

deployment planning, and support. 



Shard 3

Singular Value Decomposition is a matrix factoring algorithm used for many applications  
including Principal Component Analysis. PCA uses orthogonal transformation to find a linear 
projection of high dimensional data into a low dimensional subspace. The resulting linearly 
uncorrelated variables are called principal  
components, and represent the dimensions  
in which the greatest variance in  
data exists. 

PROBLEM
Data production is increasing exponentially, creating a
corresponding demand for Big Data processing. Complex
processing with significant data interdependencies, such as 
graph analysis, typically requires expensive investments in  
hardware and software. These solutions use specialized
hardware with large amounts of RAM, high-speed  
interconnections, and many CPUs to fit the data into memory.

SOLUTION 
The FUNL graph analytics solution combines the I/O efficiency of PSW, hybrid CPU/GPU  
algorithms, and compression techniques to deliver high performance at a much lower cost, 
with a low barrier to entry. Using off-the-shelf desktop hardware, FUNL performs comparably  
to dedicated solutions for many scenarios.

PERFORMANCE RESULTS
To test performance, FUNL was evaluated against  
three different benchmarks:

INSPIRED BY PROCESSING WITH  
PARALLEL SLIDING WINDOWS
As Big Data Graphs are irregular, processing requires random 
access throughout the entire graph which can greatly increase 
processing time. Parallel Sliding Windows (PSW)1 is an out-of-core 
graph processing technique that organizes graph data into 
partitions to be loaded separately into memory and processed 
iteratively. This enables large data sets to be processed  
efficiently on commodity hardware
 
PSW divides the graph into P intervals of vertices with  
consecutive IDs. The list of edges is then organized such that for 
each interval of vertices, the process only needs to access P 
contiguous blocks of data.

Given a graph of 1.4 billion vertices and 6.6 billion edges,  
a CPU-only solution using PSW was able to compute belief  
propagation in 27 minutes on a Mac Mini, while a  
Hadoop-based graph mining library, distributed over 100  
nodes runs the same computation in 22 minutes.

I/O EFFICIENT ALGORITHMS
Reducing I/O is key to improving the performance of out-of-core graph algorithms.  
The limited memory of the GPU means that multiple shards can be stored in CPU memory. 
FUNL incorporates multiple caching schemes to optimize  
data reuse from CPU memory for each algorithm.

Power law distributions are common in real world graph  
data. This means that there are many vertices with few  
edges, and few vertices with many edges. FUNL’s  
compression scheme improves the PSW approach by  
exploiting the large number of small integers, potentially  
cutting the file size in half. Parallelized decompression  
reduces the overhead that is introduced.

MASSIVE PARALLELISM
FUNL employs a GPU with 1000s of compute cores to accelerate computationally intensive  
algorithms. The massive parallelism of GPUs speeds up analysis by as much as an order of 
magnitude or more, depending on the computational intensity of the algorithm as well as 
properties of the input data. To take full advantage of the GPU, data can be regularized for 
even more efficient computation. The benefit gained from the use of a GPU depends heavily 
on the ratio of computation to memory access. For low computation to memory access  
scenarios, the CPU may be more efficient. FUNL distributes the processing between the CPU 
and the GPU as necessary.

ALGORITHM PERFORMANCE

FUNL Quad Core  
CPU Spark

Algorithm Data Set Performance Time (seconds) 

 Page Rank  4.8M Vertices 
 69M Edges 5.23 11.46 110.4

 Triangle 
 Counting 

 41M Vertices 
 1.4B Edges 563 3960.49 N/A 

 Collaborative  
 Filtering Using  
 Alternative  
 Least Squares

 Sparse Matrix:  
 20K x 10K 
 Non-Zeros:  
 53M

190.15 1444.85 N/A

 Support Vector 
 Machines

 Dense Matrix:  
 25M x 100 456.41 731.09 N/A

Belief Propagation is a message passing algorithm performed on graph models as a  
method to infer information about unknown vertices based on known information about  
other vertices. FUNL implements BP using  
compressed PSW.

Quad Core CPU benchmark, a CPU-only  
solution using PSW and the same hardware  
as FUNL

Spark cluster benchmark using  
Amazon Web Services

16-Core Server benchmark,   
a CPU-only solution using PSW

      FUNL /       Quad Core CPU
GPU:           GeForce GTX TITAN, 2688 CUDA Cores,  
                    928 MHz, 6GB vRAM 
CPU:           Core i7, Quad Core, 3.40 GHz 
RAM:          16GB (4x4GB), 1333 MHz
Storage:     HDD, ~ 180 MB/sec

      16 Core Server 
CPU:            Xeon E5-2690, 16 Cores, 2.9 GHz 
RAM:           64GB, 1600 MHz
Storage:     HDDx6, RAID0, 690MB/sec

FUNL / Quad Core CPU
GPU:           GeForce GTX TITAN,  
                    2688 CUDA Cores,  
                    928 MHz, 6GB vRAM 
CPU:           Core i7, Quad Core, 3.40 GHz 
RAM:          16GB (4x4GB), 1333 MHz
Storage:     HDD, ~ 180 MB/sec

Spark Cluster 
System:      AWS EC2 m1.large 
Nodes:       10
Network:    Moderate Performance
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Scaling of Belief Propagation Performance  
as a Function of Graph Size
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      FUNL /       Quad Core CPU
GPU:           GeForce GTX TITAN, 2688 CUDA Cores,  
                    928 MHz, 6GB vRAM 
CPU:           Core i7, Quad Core, 3.50 GHz 
RAM:          16GB (4x4GB), 1333 MHz
Storage:     HDD, ~ 150 MB/sec Scaling of Out-of-Core SVD as a Function of Matrix Size
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DEEP LEARNING
DeepInsight is a deep learning application for analyzing graph data. Based on the DeepWalk2 
algorithm, it uses the GPU to generate many random walks on the graph in parallel, which are  
used to learn about relationships within the graph. The result is a compressed representation  
of each node that can be used for many tasks including classification and link prediction. 
Additionally, DeepInsight can use natural language processing to incorporate text associated 
with each node to improve the results.

FUNL vs CPU-ONLY, SINGLE MACHINE SOLUTION
FUNL has a flexible framework  
that chooses the best  
approach to get the fastest 
performance for any data  
set and algorithm.

For some scenarios,  
a linear algebra  
approach performs  
better than PSW. In these  
cases, the FUNL system divides the input  
matrix into smaller sub-matrices to fit into  
CPU or GPU memory for processing. 
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